On the Inviscid Limit for Two-Dimensional Incompressible Flow with Navier Friction Condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the inviscid limit for 2D incompressible flow with Navier friction condition

In [1], T. Clopeau, A. Mikelić, and R. Robert studied the inviscid limit of the 2D incompressible Navier-Stokes equations in a bounded domain subject to Navier friction-type boundary conditions. They proved that the inviscid limit satisfies the incompressible Euler equations and their result ultimately includes flows generated by bounded initial vorticities. Our purpose in this article is to ad...

متن کامل

Incompressible, Inviscid Limit of the Compressible Navier–stokes System

– We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier–Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity.  2001 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Nous prouv...

متن کامل

The Inviscid Limit for Two-dimensional Incompressible Fluids with Unbounded Vorticity

In [C2], Chemin shows that solutions of the Navier-Stokes equations in R for an incompressible fluid whose initial vorticity lies in L ∩ L∞ converge in the zero-viscosity limit in the L–norm to a solution of the Euler equations, convergence being uniform over any finite time interval. In [Y2], Yudovich assumes an initial vorticity lying in L for all p ≥ p0, and establishes the uniqueness of sol...

متن کامل

Inviscid limit for the two-dimensional Navier-Stokes system in a critical Besov space

In a recent paper [12], Vishik proved the global wellposedness of the two-dimensional Euler equation in the critical Besov space B 2,1. In the present paper we prove that the Navier-Stokes system is globally well-posed in B 2,1, with uniform estimates on the viscosity. We prove also a global result of inviscid limit. The convergence rate in L is of order ν.

متن کامل

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough( ), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 2005

ISSN: 0036-1410,1095-7154

DOI: 10.1137/s0036141003432341